Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biosens Bioelectron ; 222: 114987, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2235818

RESUMO

Accurate COVID-19 screening via molecular technologies is still hampered by bulky instrumentation, complicated procedure, high cost, lengthy testing time, and the need for specialized personnel. Herein, we develop point-of-care upconversion luminescence diagnostics (PULD), and a streamlined smartphone-based portable platform facilitated by a ready-to-use assay for rapid SARS-CoV-2 nucleocapsid (N) gene testing. With the complementary oligo-modified upconversion nanoprobes and gold nanoprobes specifically hybridized with the target N gene, the luminescence resonance energy transfer effect leads to a quenching of fluorescence intensity that can be detected by the easy-to-use diagnostic system. A remarkable detection limit of 11.46 fM is achieved in this diagnostic platform without the need of target amplification, demonstrating high sensitivity and signal-to-noise ratio of the assay. The capability of the developed PULD is further assessed by probing 9 RT-qPCR-validated SARS-CoV-2 variant clinical samples (B.1.1.529/Omicron) within 20 min, producing reliable diagnostic results consistent with those obtained from a standard fluorescence spectrometer. Importantly, PULD is capable of identifying the positive COVID-19 samples with superior sensitivity and specificity, making it a promising front-line tool for rapid, high-throughput screening and infection control of COVID-19 or other infectious diseases.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , Luminescência , Smartphone , Técnicas Biossensoriais/métodos , Sensibilidade e Especificidade
2.
Mater Des ; 223: 111249, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2181398

RESUMO

Multiplexed detection is essential in biomedical sciences since it is more efficient and accurate than single-analyte detection. For an accurate early diagnosis of COVID-19, a multiplexed detection strategy is required to avoid false negatives with the existing gold standard assay. Nb2CTx nanosheets were found to efficiently quench the fluorescence emission of lanthanide-doped upconversion luminescence nanoparticles at wavelengths ranging from visible to near-infrared spectrum. Using this broad-spectrum quencher, we developed a label-free FRET-based biosensor for rapid and accurate detection of SARS-CoV-2 RNA. To target ORF and N genes, two types of oligo-modified lanthanide-doped upconversion nanoparticles can be used simultaneously to identify-two sites in one assay via upconversion fluorescence enhancement intensity measurement with detection limits of 15 pM and 914 pM, respectively. Moreover, with multisite cross-validation, this multiplexed and sensitive biosensor is capable of simultaneous and multicolor analysis of two gene fragments of SARS-CoV-2 Omicron variant within minutes in a single homogeneous solution, which significantly improves the detection efficiency. The diagnosis result via our assay is consistent with the PCR result, demonstrating its application in the rapid and accurate screening of multiple genes of SARS-CoV-2 and other infectious diseases.

3.
Biosensors & bioelectronics ; 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2147699

RESUMO

Accurate COVID-19 screening via molecular technologies is still hampered by bulky instrumentation, complicated procedure, high cost, lengthy testing time, and the need for specialized personnel. Herein, we develop point-of-care upconversion luminescence diagnostics (PULD), and a streamlined smartphone-based portable platform facilitated by a ready-to-use assay for rapid SARS-CoV-2 nucleocapsid (N) gene testing. With the complementary oligo-modified upconversion nanoprobes and gold nanoprobes specifically hybridized with the target N gene, the luminescence resonance energy transfer effect leads to a quenching of fluorescence intensity that can be detected by the easy-to-use diagnostic system. A remarkable detection limit of 11.46 fM is achieved in this diagnostic platform without the need of target amplification, demonstrating high sensitivity and signal-to-noise ratio of the assay. The capability of the developed PULD is further assessed by probing 9 RT-qPCR-validated SARS-CoV-2 variant clinical samples (B.1.1.529/Omicron) within 20 mins, producing reliable diagnostic results consistent with those obtained from a standard fluorescence spectrometer. Importantly, PULD is capable of identifying the positive COVID-19 samples with superior sensitivity and specificity, making it a promising front-line tool for rapid, high-throughput screening and infection control of COVID-19 or other infectious diseases.

4.
Mater Des ; 223: 111263, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2069463

RESUMO

Here, we firstly introduce a detection system consisting of upconversion nanoparticles (UCNPs) and Au nanorods (AuNRs) for an ultrasensitive, rapid, quantitative and on-site detection of SARS-CoV-2 spike (S) protein based on Förster resonance energy transfer (FRET) effect. Briefly, the UCNPs capture the S protein of lysed SARS-CoV-2 in the swabs and subsequently they are bound with the anti-S antibodies modified AuNRs, resulting in significant nonradiative transitions from UCNPs (donors) to AuNRs (acceptors) at 480 nm and 800 nm, respectively. Notably, the specific recognition and quantitation of S protein can be realized in minutes at 800 nm because of the low autofluorescence and high Yb-Tm energy transfer in upconversion process. Inspiringly, the limit of detection (LOD) of the S protein can reach down to 1.06 fg mL-1, while the recognition of nucleocapsid protein is also comparable with a commercial test kit in a shorter time (only 5 min). The established strategy is technically superior to those reported point-of-care biosensors in terms of detection time, cost, and sensitivity, which paves a new avenue for future on-site rapid viral screening and point-of-care diagnostics.

5.
Aggregate (Hoboken, N.J.) ; 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-1824576

RESUMO

The ongoing outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) pandemic has posed significant challenges in early viral diagnosis. Hence, it is urgently desirable to develop a rapid, inexpensive, and sensitive method to aid point‐of‐care SARS‐CoV‐2 detection. In this work, we report a highly sequence‐specific biosensor based on nanocomposites with aggregation‐induced emission luminogens (AIEgen)‐labeled oligonucleotide probes on graphene oxide nanosheets (AIEgen@GO) for one step‐detection of SARS‐CoV‐2‐specific nucleic acid sequences (Orf1ab or N genes). A dual “turn‐on” mechanism based on AIEgen@GO was established for viral nucleic acids detection. Here, the first‐stage fluorescence recovery was due to dissociation of the AIEgen from GO surface in the presence of target viral nucleic acid, and the second‐stage enhancement of AIE‐based fluorescent signal was due to the formation of a nucleic acid duplex to restrict the intramolecular rotation of the AIEgen. Furthermore, the feasibility of our platform for diagnostic application was demonstrated by detecting SARS‐CoV‐2 virus plasmids containing both Orf1ab and N genes with rapid detection around 1 h and good sensitivity at pM level without amplification. Our platform shows great promise in assisting the initial rapid detection of the SARS‐CoV‐2 nucleic acid sequence before utilizing quantitative reverse transcription‐polymerase chain reaction for second confirmation. An AIEgen‐graphene oxide (GO) nanocomposite‐based assay is designed for rapid detection of SARS‐CoV‐2 nucleic acids. The sensing mechanism is based on two‐stage fluorescence signal recovery due to fluorescence resonance energy transfer (FRET) effect by detaching AIEgen from GO surface and restricted intramolecular rotation (RIR) effect by formation of nucleic acid duplexes.

6.
ACS Appl Mater Interfaces ; 14(3): 4714-4724, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1655444

RESUMO

Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.


Assuntos
Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Ácidos Nucleicos/isolamento & purificação , SARS-CoV-2/isolamento & purificação , COVID-19/genética , COVID-19/virologia , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Ácidos Nucleicos/química , SARS-CoV-2/química , SARS-CoV-2/genética , Prata/química , Análise Espectral Raman/métodos
7.
Microbiol Spectr ; 9(3): e0028321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1501550

RESUMO

The Infectious Disease Surveillance of Pediatrics (ISPED) program was established in 2015 to monitor and analyze the trends of bacterial epidemiology and antimicrobial resistance (AMR) in children. Clinical bacterial isolates were collected from 11 tertiary care children's hospitals in China in 2016 to 2020. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method or automated systems, with interpretation according to the Clinical and Laboratory Standards Institute 2019 breakpoints. A total of 288,377 isolates were collected, and the top 10 predominant bacteria were Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter baumannii. In 2020, the coronavirus disease 2019 (COVID-19) pandemic year, we observed a significant reduction in the proportion of respiratory tract samples (from 56.9% to 44.0%). A comparable reduction was also seen in the primary bacteria mainly isolated from respiratory tract samples, including S. pneumoniae, H. influenzae, and S. pyogenes. Multidrug-resistant organisms (MDROs) in children were commonly observed and presented higher rates of drug resistance than sensitive strains. The proportions of carbapenem-resistant K. pneumoniae (CRKP), carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and methicillin-resistant S. aureus (MRSA) strains were 19.7%, 46.4%%, 12.8%, and 35.0%, respectively. The proportions of CRKP, CRAB, and CRPA strains all showed decreasing trends between 2015 and 2020. Carbapenem-resistant Enterobacteriaceae (CRE) and CRPA gradually decreased with age, while CRAB showed the opposite trend with age. Both CRE and CRPA pose potential threats to neonates. MDROs show very high levels of AMR and have become an urgent threat to children, suggesting that effective monitoring of AMR and antimicrobial stewardship among children in China are required. IMPORTANCE AMR, especially that involving multidrug-resistant organisms (MDROs), is recognized as a global threat to human health; AMR renders infections increasingly difficult to treat, constituting an enormous economic burden and producing tremendous negative impacts on patient morbidity and mortality rates. There are many surveillance programs in the world to address AMR profiles and MDRO prevalence in humans. However, published studies evaluating the overall AMR rates or MDRO distributions in children are very limited or are of mixed quality. In this study, we showed the bacterial epidemiology and resistance profiles of primary pathogens in Chinese children from 2016 to 2020 for the first time, analyzed MDRO distributions with time and with age, and described MDROs' potential threats to children, especially low-immunity neonates. Our study will be very useful to guide antiinfection therapy in Chinese children, as well as worldwide pediatric patients.


Assuntos
Bactérias/classificação , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/microbiologia , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , COVID-19/epidemiologia , Criança , China/epidemiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Moraxella catarrhalis , Pseudomonas aeruginosa/efeitos dos fármacos , SARS-CoV-2 , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis , Streptococcus pneumoniae , Streptococcus pyogenes
8.
Cell Rep Phys Sci ; 2(1): 100288, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1009942

RESUMO

The novel coronavirus pandemic is sweeping the world and causing global crises. The lack of effective methods of early diagnosis and accurate detection may result in severe infection as well as mortality. Therefore, it is urgently required that rapid, selective, and accurate techniques for detecting pathogenic viruses are developed. Nanotechnology-based biosensors are finding many applications in biological detection, which may address these issues and realize direct detection of molecular targets in real time. Among various nanoplatforms, optical nanobiosensors have aroused much interest due to their inherent advantages of high sensitivity and direct readout. In this review, a summary of recent progress on the optical biosensors based on nanotechnology for pathogenic virus detection is provided, with focus on quantum dots (QDs), upconversion nanoparticles (UCNPs), noble metal nanoparticles, and organic fluorescent molecules-based nanoprobes and chemiluminescence assays. These representative studies demonstrate appealing performance as biosensors and hold great promise for clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA